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SECTION 1

INTRODUCTION

Since 1970 , the Expl ora tory Studies Department of Hughes Research

Laboratories (HRL) has been conducting an extensive research program in

scene analysis. Since 1973 , much of the theoret ical  por t ions  of this

program have been supported by the Air Force Office of Scientific

Research (AFOSR). The long—term goal of this program has been to develop

technology that can derive useful information from complex real—world

scenes. The emphasis has been on the development of comp lete scene—

analysis systems. Previously , mos t work in the f ie ld had concentra ted

on ar tif ic ial or grea tly simpl if ied imagery and had usually led to the

development of piecemeal algorithms that contributed little to the con-

struction of prac tical sys tems and , consequently, to the solution of

real—world problems.

The HRL program is unique in that it attempts to deal directly with

the problems of real—scene systems . The primary areas of development

have been:

• Evaluation and development of system organization and
control concepts based on the use of pattern—directed
control  rules.

• Development of low—level image analysis operators for
use in outdoor scene analysis.

This repor t reviews the primary accomp lishments from this research

program.

H-
S
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SECTION 2
a

SCENE ANALYSIS ORGANIZATION AND CONTROL USING
PRODUCTION SYSTEMS

Recent interest in production systems has motivated their use, or

potential use, as a system control and organization technique in several
applications) This section considers one application: the construction

of scene—analysis programs . The general issues concerning production

systems and scene analysis will be discussed first to describe the

suitability of production systems as a control framework for scene

analysis. The specific details of several implementations will then be

described with conclusions drawn from their performance.

A. SCENE ANALYSIS CHARACTERISTICS

Scene anal ysis may be loosely def ined as a process for interpretin g

a scene to produce a description or decision. Programs used for this

have invar iably used a three—stage paradigm : (1) the image is segmented

into subsets relevant to the problem , (2)  the subse ts have labels
assigned to them that symbolically approxima te the ir mean ing , and

(3) the labels (or scene model) are interpreted to produce the desired

descrip tion or decision . App ly ing this paradigm in practice has involved

splitting the labelling process into several steps; this has been nec-

essary to provide interpretation flexibility for  arb itrary shapes , sizes,
viewing ang les , and contexts. The simplest example is the blocks world

linear h ierarch y,  which progresses f rom “lowest level” to “highest level”

as follows : edge—points , lines and curves , intersections , sur faces ,

obj ects, and scene descriptions. A particularl y important aspect of

scene analys is programs , and one that directly a f f e c ts the app licability

of prod uction sys tems , is d if fe rence s in the pr ocess ing necessary at
these levels (or, more gen erall y,  intervals).

In addition to splitting the segmentation and labelling process

into intervals , it has become common for the actual topology of the

conceptua l intervals to have no correspondence to the flow of contro l

between their associated processes. Even in the simple blocks world

3
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linear modelling hierarchy , it has become common f or components to have

arbitrary interconnection .
2 The abil ity of production systems to imple—

ment or enhance the desired struc ture and interconnection will be discussed .

Historically,  there have been two d i s t inc t  phases in the develop-

ment of scene—analysis programs . In the first , concern was with blocks

world scenes in which the lighting is uniform , surfaces are nontextured ,

and objects are rectangular parallelap iped shapes . In the second (and

current) pha se, outdoor or other complex scenes are dealt with in which

the lighting is nonun if orm , surfaces are textured , and the objects

usually have much more complex shapes. A primary d i f f e r ence be tween
programs constructed for these two phases is the amount and complexity

of knowledge that must be embedded in the system .

1. The Blocks World

The knowled ge in blocks world programs was derived from a linearly
embedded model that was reflected topologically in the system organiza-

tion. Edge detection is almost always the first (and most primitive)

operation on raw image data. Intuitively, edge detection can then be

viewed as a “low—lev el” operation , with higher levels corresponding to

the distance one progresses from processing raw image data and toward

symbolic information. For the blocks world domain , the levels consist

of :  edge po ints, lines , ver tices , sur f a ces , and obje cts , in that order.

This embedding of models is necessary to provide the interpretation

f lexibi lity for scenes of arb itrary shapes , sizes , and viewing angle .

Al though the blocks world programs all maintain this linear order-

ing of model levels, the flow of control in such pr ogr ams has had a

great deal more variety. The system organization of the first blocks

world programs had a structure that was directly isomorphic to the linear

modeling hierarchy just described. Information flowed in a strictly

ver tical , or bottom—up , direction. Not surprisingly ,  this primitive

control organization was inadequate. The unavoidable noise , tex ture ,

and shadows at the lowest level were easily confused for “real” ed ge

points that were propagated to the top causing failure or incorrect

interpretation . Examples of this are described in Ref. 3.

4
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The next generation of blocks world programs, beg inning wi th Falk ,
4

attempted to correct this error propaga tion by using vary ing deg rees of

model—driven verification in which the flow of control is top—down .

• Although def in i te  improvements were possible , the performance was f a r

from being robust.

Another varia tion on blocks world prog -~m control was heterarchy.
2’5

These systems were inheren tly top down bu t did no t have a pr eprogrammed
flow of control. Procedures at all levels are only invoked when they

are needed to accomp lish something at a higher level. There is no

executive control process. Instead , control is distributed throughout

the system such that the procedures can act as independent modules

mon itoring the add ition of new informa tion , instead of waiting until the

entire scene is passed up through the various levels. In heterarchical

programs, for the first time the flow of control was much different from

the topology of the models . This greatly augmented organization allowed

more noise tolerance on the part of Shari ’s system and a great deal more

generality for  Freuder ’s system than possible in previous attempts.

There is a great similarity be tween he terarchical sys tems and production

systems that will be discussed later.

For completeness , Kiuper ’s6 and Waltz ’s
7 blocks world prog rams will

be mentioned. Kuiper ’s work was an attempt to implement a blocks world

pr ogram using frame concepts.8 Unfor tuna tely , its simplicity limits the

demonstration .

Wal tz , on the other hand , demonstrated how local syntactic informa-

tion could be used to grea t advan tage in ef f icient ly ach ieving global

consistency . The effect of this work has crossed over into the second

phase of ou tdoor scene work in the form of work on simi lar “relaxation ”
9 . -methods . These methods are valuable and perhaps even required in the

complex systems that are emerging. But they do not constitute a new

approach way to computer vision . In relation to production systems ,

they can be viewed as rule selection methods .

a

5
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2. Outdoors Scenes

The second phase of scene analysis development is devoted to outdoor

scene analysis. This phase is now in its ~~ rly stages and there are thus
10 ,11, 12 , 13 , 14onl y a few systems available to talk about . Already ,  how—

ever , several significant differences are beginning to emerge . First ,

the knowled ge base is much more comp lex. Instead of the relatively

simple linear ordering of features , there is much more emphasis on hori-

zontal variety , or multiple sources of information .11’13 An examp le of

a simple hor izonta l  organizat ion ~ shown in Fi gure 1. These sources of

information can include image data from several wavelengths and range

data.

Second , there is a dramat ic  shift in the view of segmentation (one

of the three stages of the  paradigm mentioned ear l ier ) . Segmentation

had previous ly required that  labels comp letely cover the input  image

space , and usually only one type of label was assigned to an edge. The

demand for  whole image segmenta t ion has been one of the pr incipal

stumbling blocks in every vision system , because in prac t ice  it can

920-8

INTERPRETING j [
PRO GRAM S COO R D I N A T I ON

1 -.-.—--—- .---. j —
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~~~~~~~~ R~~~~
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_ I
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—
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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ORN

~~~~~~~~~~~~~~~~~~~~~~
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~~~~~~~~~.~~~~~~~~~~~~~~
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Figure  1. Horizontal organization.
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seldom be achieved even in the blocks world. Instead of comp lete

segmen tation , an alternative is point feature segmentation . Point fea-

ture segmentation can be defined as a nonhomogeneous placement of a
• • nonhomogeneous collection of f ea tures  to represent a scene. Point

feature segmentation has been justified on the grounds of redundancy and

used in some outdoor systems .
11’15

The app licabili ty of the produc tion system framework to the con-

s t ruc t ion  and control  of scene analysis systems is discussed below.

First , however , a few characteris t ics  of product ion systems wil l  be

mentioned.

3. Production System Characterization

The gener&i characteristics of product ion systems have been sum-

marized by Davis.16 From his charac ter iza tion , it appears that two
elements are most importan t in relation to scene analysis: “limited

channel of interact ion” and “modular i ty . ” The l imited channe l imp lies a

res t r ic t ion  on the in teract ion between rules because there is no com-

munication other than through the data base. Thus , there is only indirect

interaction when subsequent rules must “read ” traces lef t behind in the

data base rather than calling other rules directly . Attempts to “kludge”

calling mechanisms by sending pr ivate  tags throug h the public channe l are

usually cons idered con trary to the sp i r i t  of the  production system con-

cep t , although there are notable exceptions .
17 ’18

This limited interaction has several important effects.
16 

Production

systems focus on variations within a domain rathe r than the common threads

that link different facts. Thus , unlike procedural sys tems , prod uction

systems are ideal for domains that characteristically have a large num-

ber of distinct states that are difficult to organize . The limited

interaction also facilitates a mechanism for global control since any

production can fire at any time depending on the contents of the data

base. Thus, production systems have a “large scope of attention ,” which
• 

allows them to handle great detail while still being able to react quickly

to small changes.
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Modulari ty is the second proper ty  of production systems tha t

strongly inf l uences their use in scene analysis.  Modula r i ty  is the

property of a program to be changed without affecting other parts of the

program. In production systems , modular i ty  is pushed near its limit ,

with a single statement line (condition—action pair) being the modular

uni t.  Each s ta tement  is an independent  chunk of knowledge that  has no

control over the flow of control to the next s t a t emen t .  The control  is

determined solely by the contents of the data  base.

Modulari ty provides several importan t b e n e f i t s .  F i r s t , in appropri-

ate problem environments where there are many independent subprob lems ,

hi gh modula r i ty  makes programming easy because each s ta temen t captures  a

sing le action based on a pa r t i cu l a r  data base contex t. ’6 The concept of

modular i ty  is of course fami l ia r  f rom sof twar e eng ineer ing as a means of

k allowing better construction and maintenance of large software systems .

Second , modularity provides a consistent , unified structure since there

is onl y one s ta tement  type , the pa t t e rn—ac t ion  rule . 16 ’19 This uni-

f ormi ty simp lifies system modification , interaction with a common rule

in te rpre te r  to all par ts  of the system , and , potentially ,  examination

and modi f i ca t ion  of the system ’s ru - data base since they are easily

machinE~ readable .

4. Su i tab i l i ty  f o r  Scene Analysis

Thus f a r  there  are very few examp les of scene—anal ysis  systems

actually constructed using production systems .2° Two systems were con-

structed on this program. One of r-hese deals with higher level vision ,

and one with the construct ion of low—leve l analysis operators . Several

conclusions from the two scene—analysis examples and related non—

scene production systems are discussed below. This discussion is pre—

ceeded by a brief  discussion of the imp lementat ion experience .

a. High—Level System Implementation Experience

The two systems we comp leted were bu i l t  to exp lore ve ry d i f —

fe ren t  aspects of the scene—analysis problem. The f i r s t  was an a t t empt

to embed highe r level knowledge in production rules ; the second dealt  F

8 
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with the implementation of “low level” pr imit ive  operators . The hi gher

level system was also an attempt at constructing a system to deal with

outdoor scene problems rather  than block scenes . For that  reason , i t

was bootstrapped from two existing systems .
21’22

The basic organization of this system is shown in Figure 2. The

capabilities of this  system were quite crude . The scene—analysis portion

segmented the scene into a tree s t ruc tu re  similar to Krakaue r ’ s23 t h a t

preserved the spatial relat ion , size , and area of por t ions  of the scene

with uniform texture homogeneity ,
21 

as shown in Figure 3. Examples of

• the analysis for  a simp le and a comp lex scene are shown in Figures 4

and 5.

The production rules in the high level system were simp le graph

rules that derived simple relation information from the tree structure

model in response to simple queries. For example : (2 large long objects

in SKY) .  The only responses possib le were (yes at locations) or (no).

b. Low—Level System Implementation Experience

The second system was an attempt to determine if low—leve l

operations could be written using production systems . We attempted to

rep lace the scene analyzer portion of theprevious system with a produc-

tion based analyzer. The rules in this system were limited to strings

ra ther than graphs. Without exp laining the de tails , a set of rules are

shown below in Tab le 1, for an operator that locates smooth objects in
12

outdoor scenes.

5. Discussion of Characteristics

Based on this system—building experience , there appears to be a

dividing line between the construction of low—level and higher—level

programs. Although both involve embedding knowledge into the production

rules, the type of knowledge is very different at the two levels . The

crucial difference is linked to an observation about the decomposition
16

of a knowledge domain into independent subproblems .

9
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~MIM 115 . MA :— -: -? 16. ~ .“3PA ( 1:~I.7~ 5’4 .

~MER’;rNG SLO3~ AT THF 4. ’
(BLOB i:. 2. 1241.: AT THP 4. COMPAPE : ID BLOB 1. i:’ . ~~~. 1 24 1 . ’~’
.-ii i~ 169. MA 3: ~~~~ Av ’5PAY 1~~s. ’1ss5 .
‘BLOB • 31. 2. 13.) AT TH~ 4. c3MPA~ E: TO BL~ E 3. • 31 . 2. 13. :’.
‘MIrI 1’3. MA:~: 13 1. AYSPA ,- 1~~4 .692~ : i:i ’
‘BLOB ‘ 33. 1. 314 .  AT TH~ 4. COMF’AF’E:. TO SLOB 4 . 33. 1 . 304.
‘MIN 11:3 . MM -: 143. A- .~5~ Ai 130 .42105

~‘ MERGEtl BLOB AT TI~sF 14.’
BLOB 3.
‘XCOOPD 0 . “:OOPD 2. 3-355 . AT IHP 14 .
‘-M IN 53~ MA-: 216. A--GPo , 1 .5:3~~’:I9
JIERGING FLOB5 AT THF~~~. ‘
~BLOB ‘0. 2. 2557 . AT THP ~~. COMPARE : TO BLOB 5. • 

~‘ . 2. 2 . ’ .’
‘M IN 1 13 . MAX 216. A’-.-GRA 131. ~~ -5~ 4
BLOB ‘- 0. 1-3 . ‘30 . . AT T~4P -

~~ . •:oMPA~ E: VJ BLOB 2. • ( . i : ; .
‘MIN 59~ MAx 126 . A-GPo , ~~.)‘:3213 .
‘BLOB ‘ 22. 34. 4!.’ AT TNP 9 .  CIJMPAF’E: TO BLOB 4. -2 3. ~4. 41 . ’’
‘M IN 125. MA:.: 143. A’-- ’GPA 143.34145
‘ BLOB ‘30. 33. 14 .- ’ AT T’1P’ 7. COMPARE : TO SLOB ~~ . 3’ . . 3 -:. 14. ’’
‘M IN 152 . MA~ 130. AV 3 P 0 , 163.21423 .’
(MERGED BLOB AT THR 2~~.
‘BLOB 8.
(XCOORD 0. YCOOPS 2. AREA 4:32 . AT THP 2~~.
‘MIN 59. MA:--: $i~~. A v5P01 155 .22349 ’
ENDOF I LE

Figure 3. Sample texture region tree data structures .
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ORIGINAL IMAGE

X AND V COORDINATES 6782~8

OF REGION SEQUENTIAL
TOP UPPER LEFT CORNERf ~~~ REGION NUMBER

6 59

3 49

3 39~~~~~
-it-
uJ ~~~

3 29 -
~~~~~

c~~w

I
3 19 ~

57 15

0 1 57 2 9

TREE STRUCTURE

Figure 4. Simple tree block scene. 
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Figure 5. Car scene.
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Table 1. Low—Level Productions

((IMAG E NOT WINDOWED) — (WINDOW @ 10% AND MARK STATE 0 ) )

This rule checks to see if the image has been windowed before. If

not , it marks the entire scene with window boundaries at intervals

spaced 10% of the size.

( (WINDOW STATE 0) -
~ (WINDOW 3 x 3 AND MARK STATE 1))

This rule looks to see if a window has been processed (state 0 if

not). If not , it divides it into 3 x 3 subwindows, each marked in

State 1.

((WINDOW STATE 1) -
~ (APPLY MOMENT—OF-INERTIA AND MARK STATE 2 ) )

This rule looks to see any subwindows that are in state 1, appl ies

a tex ture measure , and denotes its application with state 2.

( (WINDOW S (W.A .  W .B .  W . C .

W . D .  W . X .  W .E .

W. F. W.G. W .H .

AND X MAX SET (A ,B ,C , D , E ,F ,G ,H ) )  MARK W .X .  STATE 3 AND D RAW
DISPLAY X ) )

A second split exists between the programs constructed for most

blocks world tasks and the programs for outdoor scenes. Here the dif-

ference is in the comp lexity of the knowledge necessary to unders tand

the problem domain.

The relative capabilities of prod uction systems in these two

domains can be described by looking at five issues : the comp lexity of

the knowledge , the form of the rules , the form of the da ta base , the

globalness of view , tradeoffs between productions and procedures , and *

14 
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the complexity of the production rule matcher. The first three issues

will, be discussed in detail below , while the others will be touched on

only briefly.

a. Complexity of the Knowledge

A basic issue in constructing the system is the comp lexi ty of

the knowledge being embedded into the program . A very simp le view will
be used here. *rst, the knowled ge used in the bl ocks world pr ograms

is structured into a linearly embedded model. On the other hand ,

the knowledge necessary for  ou tdoor scenes does not possess the same
convenient linearity. The control pa t t e rn  in the linear blocks world

systems has also been quite simple. A schematic example of a set of

rules for a Simple linear system is shown below :

(A) -~~(B)

(B) -- (C)

(D) -
~ (E)

Even if a heterarchical organization is desired , the rule set remains

simp le. This means that it is very easy to experiment with the con-

struction of such systems by using production systems to contro l their

interconnec tion ,3 but also that there is very little advantage to adding

the production system interpreter rather than using a conventional pro-

cedural specification. Early prejudices against using production systems

have probab ly been based on similar observations .

The tight coupling and linearity in the prev ious model is no t presen t

in the knowledge for  outdoor and related comp lex scenes. This is due to

the richer problem domain and the consequent greater variety of problems .

Although not written explicitly as a produ ction system , the sop his ticated

office scene system constructed at the Stanford Research Institute
11

uses many isolated chunks of knowledge which could be easily wr itten as

production rules. The system specification of Baird and Kelley
24 shows

similar rules. The road detectors constructed by Baj csy and Tavakol i26

can also be viewed as rules to construct specific operators . Finally ,

15
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the footprint rules proposed by Bullo ck 1’5 for use in interpreting range

information in outdoor scenes is an examp le of comp lex knowledge that
nicely f i t s  the rule based paradigm , as shown below :

META KNOWLEDGE LIST

PRESERVED “--—“-

D E L E T E D

5 FEATURES

2 T E X T U R E S , 1 V E R T E X , 1 LINE

ABOVE -----—-.

BESIDE

Figure 6. Range footprint rule.

Obviously, all of these examples can be constructed as production

systems.

Another view of the potent ia l  app l icabi l i ty  of p roduct ion  systems

is in the transition f rom model—matching to hypothes is—driven systems .5 ’6

Model—matching systems , in which there is usually a very simple class of

objects to be understood , can be easily constructed procedural ly ; bu t  as

the knowledge gets more complex and the choices greater , a hypothesis—

driven system is necessary . Because the amount of knowledge chunking is

much hig her in the hypothes is—driven systems , the product ion systems are

ideal.

16
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B. RULE SYNTAX AND DATA BASE ORGANIZATION

An important factor contributing to the successful use of production

systems in an application domain is the ease with which knowledge can be
mapped into the rules. It is fundamentally important to have a good

match be tween the level of detail in the pr imi tives in the problem
domain and program (language) domain. The desire to facilitate such a

match has motivated the creation of high—level programming languages.

Similarly , in production systems , Davis has noted that the primitive
16actions should be conceptual pr imit ives  in the problem domain.

A secondary factor that directly affects the efficiency of a given
produc tion sys tem wi th a given rule syntax is the organization of the

associated data  base. The matching process in the product ion system

in terpre ter becomes increas ingly complex and perverse if the data is not

organized in a manner topological ly similar to the rules.

In mos t su ch sys tems, the information has been represented in rules

that were a list structure and the data base has also been a list. This

is not particularly surprising since many of the problems have been
Uverbal.U The notab le exception is DENDRAL , in which the rules use a

graph s t ructure  to represent molecular s t r u c t u r e .
26 A lesser known

sys tem used graph production rules to represent the interconnection of

input—output (1—0) devices. Although the VIPS system dealL with

visual inf ormation of type similar to tha t fo und in scene anal ys is , the

organization remained a list.1’7

In scene analysis, the concept of spatial relationship is inseparab le

from the prob lem domain at all levels. Examples from both low—1eve~ and

high—level operations will be briefly described. The Roberts gradient ,

or cross operator , is perhaps the s imp lest low—level operator. This

operator is usually defined as follows :

FOR POINTS ARRANGED

A. . B

C. • D

17
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The point A is defined as an edge point if

- A + D J  — B + C i  > THRESHOLD

This can be imp lemented in a procedural  language :

IF I A  + D i  — l B  ÷ C i  > T , THEN A ~
- EDGE

The same operator can be written in product ion  form us ing a linear list

structure in much the same manner:

( IA ÷ Di  — lB + C~ > T) -
~ 

(A ~
- EDGE)

Finally , a graph structure can be used to more closely match the repre-

sentation of spatial information :

6782-4

‘ 0
+ 

L ... J 
— 

L ...J 
>T —* [E.~J 4— (EDGEf

Al though it is not obvious that using graph productions for low—level

operators simplifies operator construction , good notation would probably

make their fun ction and debugg ing more obvious . There would , of course ,

be a penalty paid in the form of increased complexity of the associated

matching process. The type of graph ma tch ing ne cessary has a computa—

tional comp lexity of 0(n2). Because there are many data points at the

raw image data level (a typical image may contain 512 x 512 = ‘3  x 10~
pri mi tive ma tching loca tions) ,  this type of operation has seldom been

attempted for routine use in contemporary processors .

The problems that arise in constructing higher level knowledg e are

quite similar to the low—level examp les jus t given , with three exceptions :

a greatly reduced data base , an increase in the ability to chunk knowledge

into single rules , and the possibility that the data can approach a verbal

string level at the higher levels.

18 
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There is usually a great reduction in the amount of data contained

in the representations of a scene at the higher model levels than at the

raw picture level. This reduction could be as much as a factor of

100 to 1000. This means that the matching processes that were ineffi-

cien t at the lower levels may only requ ire a reasonable amount of
process ing time at the higher levels .

There is also a distinct difference in the types of knowledge that

must be encoded at the two levels. As shown in the Robert ’s examp le above ,

the rules are really encoding a tightly coup led procedure that approaches

a “kludge” level of imp lementation .16 Higher level knowledge is much

more independent. Finally , the data base knowledge at the higher levels

of ten  approaches an Eng l i sh—text  s t r ing level that allows rules to be
3,11,25wr i t t en  as lists in the t radi t ional  manner

((LARGE BLUE) & (ABOVE GROUND)) -* (SKY )

The t ransi t ion to s t r ing info rma t ion  implies a separate  (perhaps

multiple) data base. An analogous situation exists in the HEARSAY

27
system . A disadvantage of this is that the data base is essentially

partitioned , as are the rules that can operate at each level . Although

this violates the spirit of the production philosophy of giving all

rules access to all data in the data base, it corresponds to the par—

titioning found useful in semantic nets.2° Our experience has been that

this reduces the na tur ally global “scope of attention”6 and tends to

in trod uce “pr iva te message pa ssing ” mechanisms to brid ge the gap between

the data—base partitions .

A partial solution to this problem has been developed . At the raw

image level the data base consists of a pixel array , as shown in

Figur e 7, that is an exact pictorial (rionsymbolic) representation of the

input image. The partitioned data base at an intermediate level is then

a lis t struc ture as shown in Figure 8 .

19 
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Figure 7. Pictorial data base

6782-3

V 1 V ERT EX DESCRIPTOR
V 2
V 3

V 4
S
S
.

R 1 REGION
L 1 LINES
L 2

S
S

S

L (7

Figure 8. Higher level symbolic data base.

The solution is to merge these representations , keep ing everything in a

pictorial format and eliminating the separate symbolic list structure ,

• sim ilar to the recently propos ed “symbolic pixel array .”28 In sp irit ,

this p ictor ial structure sh ou ld be imp lemented by actually writing the

discovered information into the image (by draw ing lines , etc.). It is

more prac tical , however , to use a collection of tags on the p ixel array

words to denote the data type (intensity, pixel val ue , edge point , con—

firmed edge point , vertex , curve , et c.) and then have pointers to the

descr iptors. An example is shown in Figure 9. Following such a pure

pictorial implementation can lead to an interesting implementation in

20
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..

~~~~~

L.. LP{~ TT~ ThESCRIPTOR

L

iii iii W { L I  1
iii

-

POINTER
A REGION DESCRIPTOR

Figure 9. Augmented symbolic pixel array .

which the production rules are also symbolic pixel arrays and the scene

analysis capab ility is recursively used to interpret the input scene data

base at many levels rather than at just the original raw intensity level.

In such a system , there is a natural pictorial equivalence between pro-

gram and data. A schematic of such a system is shown in Figure 10.

The effect of this pictorial data base on the rule syntax is to

allow single rules to be written pictorially tha t unif ormly access many

levels of information all with a uniform topology . An example somewhat

in the spirit of Smalltaik 29 
is shown in Figure 11. Several symbols need

to be defined for use in theprogram . An image subwindow is represented

by a squar e , and scanning the window is shown by .—+ . A line is

shown schematically in a window 
~~
. A surface intensity assignment

is made . The in tens i ty  onto sides of a line is thus ~~ / ®
An angl e assignmen t is shown ~~~~~ I . Simple predicates on the symbols

can also be specified.

If = = —
~~~ LINE —.

If = —* EDGE ~ ~

21 
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ARRAY 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SCENE
ANALY~~S 

~ 1 

PICTORIA~ J..~~
[_

ACTION

SWITCH 
__________

[0 ~ I I F  I 
~.1P~~~~~~~~ PRETER I

~~~ P r ~CESSORJI
____________ 

PICTOR IAL RULE
______ 

DATA BASE
4

MATCH MESSAGE

Figure 10. Pictorial interpretation system.
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BEGIN SEE BOX

IF $1 UNTIL F I” 1 THEN LET

THEN UNTIL THEN LET

IF ~J = © AND ® = © AND a = b + 900

THEN • UNTIL THEN LET

IF © ~AJ AND b c AND a e’

THEN $ UNTIL THEN LET

IF 9 = ® AND ® = 
~J AND f=cANDg e

THEN RETURN , ELSE FAIL ;

ELSE IF UNTIL THEN —

ELSE IF ~~ 
UNTIL 

~ 
j THEN --- -~

ELSE FAIL;

END SEE BOX.

Figure 11. Box program.
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C. CONCLUSION AND EXTENS IONS

The general conclusion from the material  presented here is tha t

production systems can provide a powerful vehicle for implementing

scene—analysis systems if several guiding pr inc iples are followed.

If efficiency is a consideration , then , in presen t ly available

sys tems , the lower level operations should be impleted in hardware .

There should also be a split in uniformity so that the low—level oper—

ators are written as procedures and the higher level opera tors are wr itten

as produc tion rules. This is not unlike the split in traditional com-

plier construction in which a finite—state automata is used to parse the

lexical items, while a more general context—free acceptor is used to

parse the syntax .

One major strength of the production system idea is its ability to

prov ide a global control mechanism while still keeping track of large

amounts of detail.

A secondary strength is the ability to form (graph) rules that can

uniformly access the pictorial information in a manner that directly

reflects the topology of the scene.

A serious disadvantage is the lack of a clear organizing mechanism

to group production rule units together , as found in alternatives such

as f r ames,
8 be ings ,3° or actors.31’ This could be partly overcome by

using meta—rules. 
32

The relative merits of the production scene framework for scene

analysis are shown in Table 2 below.

Table 2. Scene Analysis Production Systems

Prod uc t ion
~~ Sy*tet

‘ —,,chor ~ c t e r i s t I ~~s Nee d f O r  McdVI  
Need for  Current Ro le

P °~ i t r m at E f f i  y 
~

St ap le low e-.’e i No ~~ , r Ia ! re la t ln n ~ to w H~ g h Low Crouped

S ann i ng

RepeL I

Simp le high l.oe l Yea Re la tions  High Mo dest Low Ye s

St r u ( - t u r e

Hiocks  w o r l d  Ye, R e l a t i o n s  High Lou Low Impo ssib le

i t O  Hi gh t o  I -~ Imp o ss ib le

Outdoor sce ne, Yes Nun* r ira l
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SECTION 3

LOW—LEVEL SCENE—ANALYSIS OPERATIONS

£ The objective of this contract has been to investigate the problem

of system organization and control for realistic , real—world scene

analysis. The taskcf extracting and analyzing useful image features is

the vital first stage of every scene—analysis system. Unfortunatel y ,  it

is also very diff icult , especially for outdoor imagery . This section

describes the results obtained on this program towards the implementa-

tion of useful feature extraction operators for outdoor image analysis .

A. GENERAL FEATURE TYPES — POINT , LOCAL , GLOBAL

An examination of image features shows that they f a l l  in to three

general categories : point , local , and global. Figure 12 shows a repre-

sentation for each category for a simple scene example. The trade—offs

between these categories are discussed below .

6127—1
a

00 00 00 0 0 00
0005550000

A SCENE POINT FEATURE
REPR ESENTATION

A

s i
L J ]

LOCAL FEATURE GLOBALFEATURE
REPRESENTATION REPRESENTATION

Figure 12. Scene representation through
a the point , local , and g lobal

types of features.
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• Point Features — Point features are used to represent a
scene as a matrix of values for every resolution element
or pixel in the image . The point value for each pixel
represen ts either the intensity magnitude (a function of
the reflectivity or emissivity) or the range from the
sensor to the point. Figure 12 shows a matrix of values
that represent the pixel intensities. Point measu’-es
have the advantage that they are usually ava ilable direct ly
from the image sensors with little additional pr ocessing
required for their extraction . Their major disadvantage
is that they have poor invariance characteristics. For
examp le , they can vary widely with small changes in
illumination and contrast levels. It is sometimes
possible to perform transformations on the point feature
data to overcome the lack of invariance but , as a r ule ,
these transformations are computationally very comp lex.

• Local Features — Local—feature measures include average
in tens ity ove r an area , locally connec ted li ne segmen ts
and curves, and line and curve intersections . Features
based on local measures have greatly improved invariance
characteristics in comparison with point measures. These
invariance charac ter istics ar ise f rom local averag ing and
the use relative measures , as in the detection of edges.
The pr esence of a line segmen t , fo r  example , will not
change for a wide range of illumination and viewing angle
changes , even though the absolute values of the point
features prouucing the gradient may shift dramaticall y.

The point features represent an image exactly , although
with little invariance or data compression efficiency .
Local fea tures , on the other hand , represent an image in
an abbreviated or abstract manner. The relative positions
and orientations of line segments and line intersections ,
for  examp le , may be sufficient to specify an object ’s
shape. An image model using local features has the advan-
tage of greater invariance to image differences and a
smaller memory requirement compared to that for point
feature matching . An example of a local feature model
is also shown in Figure 12. In this example , t h e local
features are corners.

• Global Features — Global features include regions , entire
surfaces , shapes , an-I objects that have been segmented or
extracted from an image. A global representation or model
for a buiiding might consist of several rectangles con-
nected in a specific way . A trivial global representation
of a block structure with two separate regions A and B is
shown in Figure 12.

26 
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Global features have a high degree of invariance to image
differences. Unfortunately,  global features are the most
difficult to extract successfully. This is because they
depend on the segmen tation of comple te reg ions or surfaces
from the scene.

Table 3 summarizes the above discussion on image features.

This table shows that the point features suffer from poor invariance

characteris tics and , therefore , are inappropriate as a primary component
in outdoor scene models . Further , it shows that global features are in

general more difficult to extract , but can provide better invariance

when available . Feature extraction methods that successfully identify

both local and global features have been developed. Based on this

qualitative comparison of feature characteristics , the feature categories

are given an approximate utility ranking that can be used in a control

utility function.

Table 3. Comparison of Feature Types for Scene Models

Transform to
Extraction Correct for Relative

Category Invariance . . .
Difficulty Invariance Utility

Error s

Point features Poor Trivial Difficult 0

Local features Good Moderate Not always 1
ne cessary

Global features Excellent Difficult Not necessary 2

1. Generic Feature Examples

As br ief ly  men tioned above , there are many local and global scene

features. This section will discuss a large collection of features that

have a high potential for use in modeling outdoor scenes.

Although the po int fea tures are , by themselves , inappropr i ate for

use as fea tures , they do supply the bas ic da ta for  the iden tif ica tion of

local and global features. Most local features are based on the use of

edges in the image. These can be derived by detecting discon t inui ties

27
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in the point feature data. In a dual sense, many global features are

derived from uniform regions in the scene found by propagating the simi—
larity of some property within a region rather than the difference across

a boundary . Because these two feature types are fundamental , edges and

regions are the basis for most useful scene features.

• Edge Features — The discovery and analysis of edge point
da ta leads naturally to the development of line and curve
segments and vertices at the intersections of line seg-
ments. Measurements can then be performed to produce
“derived features” in the form of relative lengths , ang les,
number of lines meeting at a vertex , vertex locations , and
endpoin t locations. The primary local and derived fea-
tures are listed in Table 4. The utility values are
based on their associated degrees of freedom.

• Region Features — Global regions are apparent in a scene
as areas of uniform point feature values (patch of uni-
fo rm ref lectance , texture , or color). Because a region
has a boundary it also forms edge points that can be
analyzed as curves or piecewise line segments. From the
reg ion ’s boundary points and interior area points , many
derived measures can be formed to characterize the region .
Several of these are listed in Table 5.

Table 4. Locally Derivab le Features

Feature Utility Value

Linea 2

Curveb 3

Ver tex 2n + 2

aLine is not considered to have definite length
bCurve approximated by ~hort , straight segments

for  simp lic ity.
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Table 5. Global Features

Global Feature Comments

Area “—Size

Perimeter

Area/411* (perimeter)
2 

Closeness of region to circle
1/2Radius of gyration A= (~~20

+p
02 )

Invariant moments Unique shape characterization

Cen troid pos it ion

Leng th

Wid th

Length/wid th Aspec t ra tio

• Texture Features — It has already been shown that the
unreliable point measures can be used to determine edges
and reg ions. In addition , the reg ion su r faces f r equen tly
have texture properties that can be measured to derive
feature information . Statistical texture features have
received the most attention. They are derived from
the surface gray—level histogram.

First—order (mean, var iance , skew , kurtosis) and second—
order measures (energy , en tropy , correla tion , momen t of
inertia) statistical means can be derived from this
histogram . Although first—order statistics can be used
for relative measurements (such as uniformity), they
cannot be used for texture classification because of
their sensitivity to scene contrast.

The second—order statistical measures are based on
information about pairs of image points represented in
a gray level dependency matrix . These statistics have
been shown by Flaralick to be invariant to scene con-
tras t if a his togram equaliza tion is pe r fo rmed on the
gray—level statistics that describe texture character-
istics such as comp lexity, coarseness , and homogeneity.

Table 6 lists several first— and second—order image statistics that

have been evaluated.
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Table 6. Statistical Measures Used in Texture Analysis

FIRST ORDER

1. Minimum , maximum , and mean gray values

2. Histogram peaks

M A X - M I N
3. Contrast: 

~~~~~~~ ÷ MIN
4. Skew (histogram symmetry)

5. Kurtosis (histogram flatness)

6. Variance (histogram dispersion)

7. En tropy

SECOND ORDER

8. Angular second moment (amount of edge , related to the energy in
the image waveform or the average uncertainty.)

9. Entropy (related to the complexity of the scene)

10. Correlation

11. Angular second moment inverse (related to the homogeneity of the
image)

12. Moment of inertia (related to the coarseness of the image
texture.)

13. Kikuchi entropy

B. OPERATOR CHARACTERISTICS

1. Ed ge Opera tor Evalua tion

Quite early in the investigation the performance of several edge

operators was evaluated. The results , which were presented in Ref. 33 ,

are summarized below.

Two types of edge detection must be considered for adequate real—

world scene analysis. The first was defined as macro—ed ge detection ,

which involves major surfaces. The second was microstructure edge

detection , which involves boundaries of surface texture elements. Six

edge operators were then evaluated to determine their performance at

both macro and microstructure ana lysis. These were thresholding, two
34 ,. 21 35

types of f i l ters , and the Sobel , Kirsch , and the Hueckel Operator.
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The evaluation was made on one traditional blocks world scene and six

difficult real—world scenes with texture from several contexts. The

performance of each operator was very consistent from scene to scene but ,

as expec ted , varied grea tly between the operators. The Kirsch and

Jueckel operators show the most promise for future use. The Kirsch

opera tor can be v iewed as an excellen t “conservative” edge operator for

real—world scenes. It is very successful at finding the predominant

edges in difficult images. The Hueckel operator can be viewed as a

“thorough” edge detector. It finds all of the predominant edges , as

well as mos t of the very low contrast edges . Unfortunatel y, the Hueckel

operator is also computationally more expensive.

A useful strategy was suggested to improve the efficiency of real

world edge detection. First , the conserva tive Kirsch operator is app lied

to find all of the predominant edges. These candidate edges are then a

first interpretation of the scene ’s edge structure . The information can

then be interpreted in terms of a model and the user ’s goal to form a

plan for further analysis. The analysis is then carried out by selec-

tively app lying the thorough Hueckel operator on the basis of the

analysis plan to find more information where needed . This balanced

strategy is more efficient than running the Hueckel operator exhaustively

and extracting too much detail to efficientl y process on a first pass.

Sparse and dense textures are defined in this report on the basis

of the available edge resolution, Sparse textures usually hav e h igh

microstructure edge contrast , while dense textures have less apparent

contrast. Edge detectors with low edge contrast sensitivity can usually

extract sparse texture microstrueture edges , just as they do high con—

trast surface boundaries. Edge detectors with good sensitivity to low

con tras t ed ges are na turally better at extracting dense texture micro—

structure edges. This was confirmed in the experimental results.

Further , the Hueckel operator was shown to be the most sensitive to low

con tras t , dense texture microstructures. 
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Specific conclusions about each of the six operators are summarized

below.

• Thresholding

Gray—level thresholding produces the poor results expected

because of the slow gradients in the original images.

• Preprocessing by Fil ter ing

The examples show that very little is gained by preprocessing

natural scenes. If prefiltering is done , the problems of noise and pos-

sible information loss should be carefully considi-red . Most of the high—

frequency information enhanced by the Lap lacian can  als ( he ~xtracted by

either the Kirsch or Hueckel operators alone. Althoug h not attempted

here , local h igh—pass filtering to enhance micros trut-tur edges may

prove useful.

• Sobel Gradient Operator

This simple gradient operator is shown to be very insensitive

to low contrast gradients and gradients that have tcxtual unhornogeneity.

This results in very poor capability to extract dense texture microstruc—

ture acid internal surface edges over which there is little contrast.

However , high contrast surface boundaries and sparse texture micro—

structure can be reliably extracted .

• Kirsch Operator

The Kirsch operator is slightly more complex than the Sobel

operator but produces much better results for natura l images. The

definition of the operator makes it sensitive to texture gradients and

to simple uniform br ightness gradients. This feature preserves con-

tinuity of the detected texture microstructure better than the Hueckel

operator and makes relativel y good performance possible even for dense

texture microstructure.
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• Hueckel Opera tor

- The Hueckel operator is by far the most sensitive to low

contras t edges. This increased sensitivity is at the expense of speed

and computational comp lexity, however. With a high “DiFF” setting it

does an excellent job of extracting major surface boundaries and sparse

texture microstructure. The slightly poorer performance but increased

speed of the Kirsch operator makes it a better choice for this task ,

however. The Hueckel operator is most useful when selectively applied ,

with a low “DIFF ” setting , to extract low contrast dense microstructure

ed ges .

• Sample Results (Tank Image)

Th is is an examp le of a scene with both a difficult object and

background terrain. It has been digitized to the same standards as the

two previous aircraft images. This image is more difficult than the

other aircraft images because of the comp lex background features.

The or iginal image is shown in Figure 13. As would be predicted ,

the low—pass filter (Figure 14) succeeded in covering up some of the

dense background microstructure. Also , the high—pass filter result shows

greatlj enhanced microstructure (Figure 15). Thresholding (Figure 16)

produced the expected comp lex , difficult to interpret result. Because

the ed ges o~-i the tank are fairly distinct , the Sobel operator was

reasonably successful (modulo the resolution of the original) at object

segmentation (Figure 17). It has, however , mixed all but the most dis—

tinct (sparse) background microstructure. The Kirsch operator was more

successful at extracting the microstructure (Figure 18). The results of

a high—pass followed by a low—pass filter , and vice—versa , are shown

in Figures 19 and 20. Neither case particularly helps the situation .

The results of the Hueckel operator with a high DIFF setting (Figure 21)

are only  slightly better than the brightest edges in the Kirsch operator

result. The Hueckel operator result with a low DIFF setting (Figure 22)

is actually more difficult to interpret than the microstructure in the

Kirsch result due to the loss of edge continuity . The Hueckel result ,
— 

as suggested earlier , may contain finer detail that can be int erp rL- t ed

under the guidance of the Kirsch result.
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Figure 22. Hueckel operator with low DIFF setting.
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A summary of the relative performance and computational  charac ter i s t ics

for the edge operators is shown in Table 7.

Table 7. Edge Detector Comparison

ComputationalEdge Opera tor Performan ce Rank
_________________________ Complexity

Roberts cross 4 N (3a)

High—pass filter 4 N (9a)

Laplacian 4 N (9a)

Sobel 3 N (l4a)

Kirsch 2 N (72a)

Hueckel 1 54 (a-1-m) = 270a

N = Number of image elemen ts

a Machine add cycle time
m = Machine multiply cycle time (assume m i~ 4a)

2. Line Finding

Lines can be an important local shape characteristic of edges

associated with objects (especially man—made) and context detail.

Unfor tuna tely, the basi c edge operators described in the edge detection

section do not determine if there is any structure in the collection of

edge poin ts they detect. Therefore , a d if f e r e n t me thod mus t be used to

associate structure on a collection of detected edge points.

There are many approaches to the structure—finding problem , including

line and curve f itt ing , dynam ic programming , heuris tic search , and the

transform techniques.
34 When the goal is to mechanize comple te globa l

segmen tation in terms of connected boundar ies , then the fitting and

searching techniques produce good results. Unfortunatel y, the complexity

and noise in outdoor scenes usually makes it impractical to apply global

segmentation . Also,,these operations are computat ionallv very complex ,

usually requiring at least in
2 
op er - It Ions , where m is t~ e number of
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detected edge points. An attractive alternative is to use transform

techniques. Although it might be possible to use the Fourier transform

for such a purpose , a much more effective transform is the Hough

transform.
36 The Hough transform has been used successfully to find

isolated line and curve segment~
6’37 and has a compl &-xit\ of order m .

The basic notion of the Hough transform is to map edge points in

the image space into curves in the transfori l space on the basis of the

normal parameterization of the line (curve). A simple example is shown

in Figure 23. Concurrent edge points generate curves in the transform

space that intersect at a common point corresponding to the slope and

y—intercept of the line. The transform space information is deposited

as a two—dimensional accumulator array , then the important slopes and

intercep ts are fo und by searching for m xiina . Finally, possible line

intersections are found from the line segment position data by solving

sets of simultaneous equations. Thus , the information provided by this

process about edge features in the scene is the position , length , and

orientation of isolated line segments. For intersecting l ines , it pro-

vides the position , number of intersecting lines , and their angles.

This information is stored in the model as nodes with the correct image

space coordinates and with labels on the nodes as to the details of the

features.
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Figure 23. Hough t r a n s f o r m  example .
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Early development of the Hough transform technique for line find ing

were carried out on this program using the simple scheme shown in

Figure 24.

b lb(J
LOCATI  LINE
SrRucT uR[

Fi gure 24. Edge feature extraction process.

The first experimental results are shown below in Figures 25 , 26 , and 27.

These results are described in more detail in Ref. 12.

Because this program emphasized system organization and control ,

the line—finding process was not developed further . These successful

initial results, however , provided the starting point for refinements
39carried out by A. Luk and S. Dudani on a DARPA contract. Some typical

results are shown in Figures 28 and 29 .

3. Texture Measures

Texture is an inherent aspect of all real—world visual scenes. The

ideal edges — nd homogeneous surfaces that have been the cornerstone of

present vision research exist primarily in images of man made objects.

Most real world scenes (outdoor , med ical , etc.) present the primitive

aspects in the form of textural information , texture edges , gradients ,

reg ions , and surfaces. The human ability to deal with this texture

information is so well adapted and the processing seems to be done at

such a low level that we are seldom aware of the textural characteristics

in an image. Unfortunately, for  reasons of priorities , lack of under—

standing , and process ing time , texture has been essentially ignored in

computer vision . But because many of the important application areas

are inheren tly tex tural , it is vital tha t the computer analysis of tex-

tures be better understood. The work reported on here is a first attempt
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Figure 27. Complex scene vertices .

to build a sophisticated texture—analysis system . Previously, there has

been some work on low— level statistical analysis of textures, reg ion—

growing programs based on br igh tness and color proper ties, simple shape

analysis, and region growing based on shape regularities. The specific

work to be reported on in this report is concerned with the implementa-

tion of the low—level statistical aspects of texture analysis and the

extension of these techniques to derive low—level directionality and

structure information .

The first implementations of the measures shown earlier (in Table 6)

used these measur es only as a texture transform (transform the input

image in to a new one wh ere br ightness was a function of the texture).
Relative comparisons between local areas in an image were then per—

formed to obtain area texture characteristics. Examples of such charac—

teristics (for uniform ; I r ~~ C I s )  are shown in Figure 30.
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These preliminary studies hinted that much more information could

be derived from these simple measures. First, by measuring the statis-

tics separately in four directions , information can be ob tained on

texture directionality. Second , by varying the spac ing be tween pairs of

points when the statistics are collected , information can be ob tained on

the lengths of the texture element.

The results of such a process in one direction are shown in Figure 31.

These graphs show the values of the six second—order measures as a func-

tion of spacing between the pairs of points. Although the values vary

between the measures, the positions of turning points are often the

same. The spacings that correspond to the turning points are the dimen-

sions of texture microstructure in the given direction .
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4. Simpl i f ied Tex ture Direc tionali ty Measure

Dur ing the edge operator investigation , we realized that the Soble

opera tor could be used to measure edge direction and magnitude. The

direction of edges is important information that is usually difficult to

extract. For example, the Fourier transform was one of the first

texture—analysis techniques because it provided directionality informa—

tion (at great computational expense, unfortunately). The statistical

operations described earlier can be used to derive direction information ,

but they are also expensive (although much less than the Fourier).

Therefor e, we decided to investigate the ability of the Sobel operator

to determine texture directionality .

The Sobel opera tor is des cr ibed as a 3 x 3 gradient operator that

computes a value for each point in the image. The operator about point I

wi th the eight surrounding points labeled

A B C
H I D

C F

can be describ ed as: Id = (X 2 + Y 2)112, where X = C + E + 2D — C — A —

2H and Y = C + A + 2B — C — E — 2F. The X and Y components can then be

used to de termine the edge direction , which in this case was quantized .

This method was successful. The results in four quantized directions

are shown in the histograms in Figure 32.

5. Low—Resolution Features

A difficult task that often arises in outdoor imagery is the analysis

of a distant scene with little resolution. There may be too little detail

for the edge , l ine , and texture features , devel oped thus f a r , to be found .

Therefore , we attempted to determine features that might be useful in

analyzing i~uch imagery .
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An early result was an operator called the interest operator.
12 ’38

This operator evolved from work on texture analysis discussed earlier .

The motivation for this operator was to greatly reduce the portion of a

large low—resolution scene that would otherwise have to be examined in

detail. The computationally simple interest operator can be app lied

first to find likely areas with some structure , then a more sophisticated

operator could be applied for more detailed examination in the small area

or to consider the geometric relation of the areas. This strategy keeps

the amount of computational effort app lied to a scene area proportional

to the expectation return from the effort.

Hughes previous work on texture analysis showed that the areas with

high structural content will normally have a coarse texture. This sug-

gested that the moment of inertia measured the joint amplitude proba—

bility density was appropriate. As it stands , the moment of inertia

operator is unable to tell the difference between coarse textures of

objects, roads , or terrain. This situation can be improved if it is

assumed that there are highly structured areas on man—made target objects

and that these areas are spatially unhomogeneous. Roads and ground ter-

rain , on the other hand , are usuall y spatially homogeneous in at least

one direction. Thus, an appropriate interest operator should find

regions that are coarse and spatially nonhomogeneous.

Based on the above criteria , the interest operator was implemented

as shown in Figure 33. First , the image is partitioned into equal samp le

windows. A reasonable window size would be one—tenth of a linear dimen—

sion of the total image. This assures that the selected windows will be

large enough to contain reasonably distinct features for final analysis ,

but small enough to make the processing t ime reasonable for the final

selection phase.
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IMAGE OF INTEREST MARKED

~~1OMENT OF~ 

L~~~~~
- - H  ~:::~~ ~~ D LOCAL~ ~~ 

_ _ _ _ _ _

Figure 33. Interest operator mechanization.

Second , the moment of inertia is computed for each samp le window .

But to get the spatial homogeneity information , the measure is calculated

in four directions (hcrizontal, vertical , and left and right diagonal)

at each point. Of the four values thus obtained for each point , only

the minimum of the four is retained . This strategy has the property

that if the nonhomogeneity is low in any one direction , then the value of

the entire measure will be low. Of course , the measure is also low if

there is little variation in any of the directions. High values will

thus be assigned only to those regions t h at  are hig h l y  irregular and

likely to be interesting .

Finally,  the resulting value for each window is compared with the

value of the eight surrounding windows . The window is marked as inter—

esting if and onl y if its value is grelter than the eight surrounding

values. This is equivalent to selecting onl y the loc~i 1 maxima window as

interesting. This step enhances the rejection of large uniform areas

or surfaces.

An example of its application is shown in Figure 36. This figure

also shows that the tagged areas are essentially rotationall y invariant.
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A more elaborate low—resolution model , cal l ed a “footprint ,” was

lIt ~-r developed using both the texture interest and strong lines (when

present). An examp le of such conhined features is shown in FigurL- 35.

5654 - 5

~~~~~~~~~~ Figure 35. Footprint example .

— EDGES

0 TEXTURE
-
~~~~~~

- c
- C-

The four images show the change of these features with respect to dis-

tance. A technique for using such distance—related footprints for the

ana lysis of range motion was outlined in Ref. 15. This scheme used a

l inked model. The link was between a representation at a distant range ,

and one at a close range , as shown in Figure 36.

5654-2

F U Z Z Y  DOMAIN RANGE CHANGE R E S O L V A B LE  DOMAIN

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~( 
~~~ 

-
~

X T E X T U R E  PRO MINENC ES

VER T EX POINTS

PROMINENT LINES

Figure 36. Linked footprints.

This type of l inked data structure cart be elaborated by procedural

F attachment to form a frame—like repre sentat ion that captures meta—

knowledge about the  expec ted changes between footprints. Art examp le is

shown in F i gure 37. The use of such a linked footprint for goal—directed

analysis is shown in Figure 38.
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Figure 37. Data structure. Figure 38. Coal driven analysis
and plan composition.

This examp le shows how a given goal can be used to retrieve the r
1 evant

linked footprints , establish a combined low—resolution match and then

force a composition of the associated meta—knowledge to form a plan to

find the objects at a close range.
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SECTION 4

SUMMARY AND PERSPECTIVE

8 There are three purposes to this summary. First , to briefly review

the research progress made on this program. Second , to assess the cur-

rent problem areas in computer vision as seen from the perspective gained

on this program. Third , to suggest areas of particular importance for

future research.

A. APPLICATION REQUIREMENTS

Until very recently,  scene analysis technology has been limited to

simple scenes with a limited variety of simple object shapes , good con-

trast , and little background or surface texture. Unfortunately, there

is a large gap between this capability and the current real—world appli-

cation requirements in satellite image processing , navigation , industrial

automation and inspection , office automation , and medicine .

The requirements for real—world scene analysis usually fall into

one of two system categories . The first system, called a “static

observer,” must deal with comp lex three—dimensiona l objects , reflectance

variations and shadows, surface and background texture , and partial or

missing parts. This type of system has been the primary goal of past

scene—analysis research. The second system , ca l led a “dynamic scene

narrator ,” must be able to deal with a wide range of environmental

dynamics in addition to possessing all of the same static capabilities.

These can include dynamic goal priorities , motion of the viewer or

ind ividual parts of the scene, chang ing resolution , and sometimes unpre-

dictable background context. Although this type of dynamic system is

necessary in many app l i cat ions , it has been given relatively little

attention. Many of the aspects mentioned above have been dealt with

individually and ad hoc , bu t no a tt emp t has been made to comb ine these

capabil ities into a single system .

With the requirements of the above two categories as a guide , the

existing scene—analysis technology can be evaluated for its app licability.

The scene—analysis technology will be described in terms of three e~ sen—

tial elemen ts: segmen ta ti on , representation , and control.
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B. SEGMENTATION

Virtuall y every scene—analysis program has used the segmentation

paradigm as the primary tool for establishing order in an image. Seg—

mentation is the process of partitioning an image into subreg ions that

are homogeneous with respect to some feature property . Shape- analysis

is then usually performed by interpreting the sub—reg ions and their

:elationships.

There are at least eight fundamental methodolog ical tools associ-

ated with segmentation: contouring , ed ge detection by temp l ate dif—

ferencing, edge detection by functional approximation , region growing ,

detection of macro and microstructure using clustered features , guidance

from defocused images , guidance from glancing, and utilization of multi—

sensor data. Each of these has independently grown to he- quite sophisti-

cated for dealing with different subproblems of segmentation , yet

segmentation capability as a whole remains poor for complex outdoor

scenes. Significant progress in low—level vision can be made at this

point , not by trading off one technique against the other , hut by care—

f ully examining how the best independent elements of each can be

integrated into a sing le segmentation process that is better than any—

thing currently available. This has not been achieved in any system ,

including the existing cluster—based systems , to any degree- of generality.

Although not an easy problem , it is certainl y within the reach of any

group willing to carefull y implement a system of greater complexity than

that any previous segmentation process.

Among the segmentation methods mentioned above , co n t o u r i n g  is

pr obabl y the oldest method . It involves the successive thresholding of

the image gray levels into contour planes and then tracking around the
40 .resulting area . This technique was abandoned earl y in block scene

ana lysis because the resulting segmentation had many unwanted fragments

due to reflection highlights and surface gradients. Surprisingl y, th is

process has been used to produce segmentations of difficult real—world

imag ery in two examples.21’’24 This method is not suggested as a replace-

men t for edge or region segmentation , but as a comp lementary method . It

can be used , for  examp le , to find large areas that are interesting on
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the basis of a thresholding predicate such as texture or color (the blue

sky, for example). A contouring technique was used in the high—level

production system example described in Section 3. It successfully

• demonstrated that such a scheme can be useful in outdoor scenes if cor—

rec tly app lied .

The concen tra t ion in earl y scene—anal ysis work on the blocks world

led to a preoccupation with the second tool , edge points in block scenes.

We studied the perf ormance of several edge operators on difficult real—

world scenes33 
and found that the Hueckel

35 
and Kirsch operators

21 
give

the best performance on complex scenes. Based on the variation in oper-

ator performance, further work on edge operators is important , but it

should be done in the specific context of real—world problems . One

approach would be to refine the use of existing operators under the

control of better interpretation programs .

A common conceptual mistake when people are first introduced to

scene—analysis problems is to assume that the segmentation problem has

been completed with edge detection . Unfortunatel y, structure must first

be extracted from the noisy edge point locations . Several methods of

do ing this have been prop osed , including curve following and coding ,34 ’4°

curve fitting ,
41 

and the Hough transform .
34 As with edge detection ,

many of these solutions have been developed for simp le sce nes and the ir

behavior on complex imagery is not well known . However , coding tech-

niq ues are ser iousl y hamper ed by noise , and the fitting methods are

i n e f f icien t unless highl y goal directed . Moderate success has been

achieved with the Hough transform methods on real imager\- for finding

curves and lines.
37 

These techn iques have been extended on this program

and are described in Section 3.

Unfortunately, the structure—identification methods mentioned above

are optimized for regular man—made shapes in which long straigh t l ines

and simple curves are predominant. Virtually no work has been done

towards develop ing a general techn ique fnr natural structure isolation

schemes. For example , it is hard to imagine using any of the existing

techniques to find a cloud on the basis of shape.
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The fourth tool is a dual process to edge segmentation called

reg ion growing.42 Ins tead of f inding boundar ies on the ba sis of lo cal

differences , reg ion growing propaga tes reg ions on the basis of a cr iterion

of similarity. Region growing has seen a recent revival of interest after

successf ully segmen ting diff icult outdoor scenes)° One advantage of

region growing over edge detection is that a boundary descri p t ion is

au toma tically pr oduc ed , eliminating the need for search or transform

techniques. Unfortunately, region growing has its own inefficiencies:

the process of merg ing and splitting regions during propaga tion is essen-

tially a heuristic search. Claims have been made that region growing is

better than edge detection for complex real—world imagery because it can

easily use multiparameter information (intensity, color , etc.) and

because it is more global and thus less sensitive to noise.
30 In fact ,

however , edge detection can be done just as easily for multi parameter
da ta , and averaging over windows can be used to attain the same globa l

43
effect.

Among the tools listed above, glancing and multisensory da ta are

probabl y the least understood. The idea of glancing a t a scene to f i n d

interesting areas certainly has merit in outdoor applications. The use

of texLure and strong edge information for this purpose is described in

Section 3. Once such an area is found , it is concentrated on by a

structure—analysis process. A variety of such glancing operators,

optimized to cue on different aspects, could be used to make a pre-

liminary pass at the scene to determine: the next analysis step, what

analysis opera tors should be app lied , and how and where they shou ld be

applied .

Connected—object segmentation is the most frequently used approach

for organizing scene—analysis systems. There is growing evidence that

additional approaches are necessary, particularly in the outdoor scene

environment. From an intuitive view, it seems doubtful if the demand

for connec tedness associated with segmentation is realistic in most

outdoor scenes. Further , it seems doubtful that a complete segmentation ,

or even every edge or even every edge or reg ion , is necessary for

understanding outdoor scenes. The idea of using “distinguished”
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fea tures11 from multiple sensors (if possible), is an initial step

toward new approaches. These would be an extension from the planning

phase to the analysis phase of the glancing , mentioned above. The early

stages of an extension using collections of isolated features from

mul tiple sensors , fea ture loca tions f r om glanc ing “interest” opera tors ,
and available “obv ious” region and line—intersection data together in

one representation is shown in Section 3.

The few exercises so far done with outdoor scenes have shown that

color is an extremely powerful cue for segmen tation.1° The importance

of color has also been verified in the analysis of LANDSAT photography

-by the excellent success of simple classification schemes that do not

use shape at all.
44 We expect tha t color will continue to play an

important role in real—world- scene analysis. There are, however , some

unexpected problems . Color in many situations may not mean the usual

red , green , and blue bands. Instead , it will probably be more common to

have colors widely displaced in the spectrum from ultrasonic , through

millimeter waves , and up to ultraviolet. The unsolved problem for such

colors is the difference itt resolution and the nonregistrability of the

imagery.

In addi tion to color , important cues for three—dimensional seg—

mentation can be obtained from range data. This can be provided by
45 46 . 47

millimeter—wave or laser range finder , by ster eo , or by gradients.

The significance of range data has been demonstrated by its ability to

simplif y the segmentation and shape analysis of complex three—dimensional

objects.
48 

One of its best properties is its invariance to the illumi—

nation effects that trouble most edge feature data. The excellent suc—

cess of these initial experiments shows the importance of further

development in these areas.

There has been a growing f l u r ry  of work on tex ture anal ys is f or

real—world scenes. There are currently two approaches to texture

analysis: statistical and structural. The statistical approach is

based on measures such as entropy and the moment of inertia of the gray

level co—occurrency matrix (or second—order joint probability
49

distribution). The values derived from these measures can be used
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50 . . 51
directly for crude classification , as the basis for segmentation , or

to derive inf ormation about proper ties such as homogenei ty and coarseness ,52

as shown in Section 3. The structural approach is based on th~ spat ial

and directional characteristics of the texture. This information can be

derived directly
53 from indirect properties of the co—occurrency matrix ,54

the Four ier transform, or simple nontransform histograms , as shown in

Section 3~ 47~ 55 Unfor tunately, texture has a recursive nature , with the

statistical characteristics at the following level. Thus far , no uniform

approach has been devised that acknowledges this dual aspect. Segmenta-

tion in real—world scenes, the understanding of surface types , and the

analysis of background context will be aided with further progress in

texture analysis and representation.

Real—world scene analysis can benefit greatly not only from intensity

informa t ion , bu— also from color , range, stereo , gradient , and texture

information. In the past , scene analysis has been plagued by problems

of noise, shadows , ambiguity, and variety. Many of these problems are

much easier if information is available from several of these soure-es at

the same time to produce redundant and complementary interpretations .

This “multiple interpretation segmentation” is an important tool that

has not really been exploited in any of the current scene—analys is

programs.

C. REPRESENTATION

The internal representation of knowledge is a central issue in image

unders tand ing and problem solving . The overall success of a system

— heavily depends on the adequacy of the representation. There are two

distinct forms of representation in scene analysis: geometric and sym—

bolic . Geometric representations in scene analysis have been in terms

of two—dimensional surfaces
56 

and three—dimensional volumes.
45 The four

symbolic representations that have been common are semantic nets
57 and

58 59 . 60 ,61procedural , declara tive , and production systems . The geometric

representations model local order , der ivable f r om pr imi tive fea tur e

ex trac tion , wh ile the symbol ic represen ta tions mod el global world order.

A key issue In future real—world scene—analysis systems will be the £
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real—world scene—analysis systems will be the selection of adequate

geometric and symbolic models and the intermediate conversion process

between these two representations.

• Al though progress has been made in extending geometric two—dimensional

surface representations to three dimensional volume representations ,
48 

as

yet there is no general technique. Also, outdoor scenes pose their own

problems in the geometric representation of natural shapes such as sky ,

clouds , and texture. For example, an adeq uate model for  a comp lex

natural object has never been constructed , even at the conceptual level ,

using any of these ideas. Unlike segmentation , real progress in this

area is thus hampered by the lack of pure invention.

On the other hand , relatively general symbolic representations have

been developed for world modeling . Currently, the declarative and pro-

cedural forms are receiving the most attention . The declarative form

consists of a set of facts describing the knowledge and a collection of

general rules (actually procedures) for manipula t ing facts. To solve a

par ticular problem , a set of relevan t fac ts (a knowledge domain) is

manipulated until a success deduction is reached . In one declarative

approach , called the state—space method ,62 
the procedures are trans-

formation rules and the deduction is a guided heuristic search that

terminates when a goal is reached . In a second declara tive approach ,

called theorem proving, facts are stated as axioms and the deduction is

by formal proof procedures. The production system methodology developed

in Section 2 uses a declarative form of knowledge representation. In

this scheme , the facts or knowledge base is the information discovered

during the feature—extraction process. The manipulation rules are a

collection of condition/action productions that control the symbolic

mani pulation of this information . Such declarative representations

are often inefficient for low—level vision unless some form of graph

no tation is used , bu t are qui te na tural f or h igher level vision.

The procedural form of representation is quite different. Pro—

cedural knowledge is stored (or embedded) within programs that either

know or can compute the answer.
63 The motivation for procedural repre—

sentations is that it is often valuable to associate control information

about a fact with the fact itself.
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The declarative form of knowledge representation has the advantage

of easy modification by inserting or deleting axioms . Procedures , on

the other hand , are modif iable  only by the difficult process of
debugging. 64 Declara tive knowledge is also general purp ose , wh ile pro—

cedures tend to be special—purpose. Finally,  the declarative form is

more eff icien t and can eas ily integrate heuristic , semantic , and temporal

knowledge.
65

Although procedural representations have been introduced in graphics ,

they have only recen tly been utilized in scene analysis.6 The extension

— of production systems with meta—rules for guidance is one way to give a

declarative production system some of the advantages of a procedural

representation .32 Another possibility (described in Section 2) is the

actual construction of procedures that make high—level use of visual

information.

The third symbolic representation is the semantic net ,
66 which

consists of nodes corresponding to objects of surfaces and links cor-

responding to relations . The semantic net has found wide use in past

scene—analysis work because there is a relatively natural correspondence

to geome tric models , and it allows simple deductions to be made trivially.

Al though nets (or graphs) can easily model spatial relations by them-
selves , they can nei ther easily represent temporal events nor specif y
how the resulting deductions are to be applied .63

Another important problem associated with representations is their

interface to the rest of the system . In many areas of artificial

intelligence there is an interface problem at the numeric/symbolic level.

In scene anal ysis there is the additional barrier at the geometric

(spa tial)/symbolic (semantic) level. One interface mechanism for the

geometric—symbolic level , is the use of graph rewriting rules operating

in a production system framework (as described in Section 4). Such rules

can spec if y the spatial relations of numeric operators , can be operated

on themselves as symbol ic entities , and can specif y what numerical or

symbol ic form is to result. Such an extension was also recently made
20

for semantic nets.
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D. CONTROL

The issue of control and system topology has received a great deal
67 . .of attention in scene analysis. Brief mention will be given here of

a the three principal structures: hierarchical , heterarchical , and pro-

duction systems.

Early programs in scene analysis and artificial intelligence had a

definite hierarchical control structrre. Scenes were first processed

with an edge detector , then a line finder , then a primitive matcher , and
- 

so on. The flow of control was from the bottom to the top .
56 

Later ,

vision programs used model—directed or goal—guided search in which

control also flowed from the top down .
4

An alternative organization involves several subcomponents working

on a problem simultaneously by passing information between them . This

has been called a heterarchical organization . Heterarchy has been

advocated as a cooperative method that could overcome some of the prob-

lems of linear organizations.
2 

It allows components at all levels to

exert goal—guided behavior without a vertical organization. Further ,

the control is distributed throughout all levels rather than only at the

top lei -~l.

The most recent control scheme is called a production system .
61 

In

this form , knowledge is represented as an ordered set of rules (produc—

tions) consisting of a pattern and an action. If a pattern in the cur-

rent data matches a production , then the action is executed , thus

mod if ying the data.

A slightly modified production system has been developed for control

of high— and low— l~~ el scene analysis. This work , described in Section 2,

shows that production systems are interesting fo r  real wor ld  scene

analysis for several reasons. First , it is possible to embed a dis—

crimina tion ne t in a pr oduc t ion sys tem.
68 

Second , the productions them-

selves can behave as antecedent theorems as used in procedural forms.
63

Th ird , because the entire data set can be matched , a production can be

tr iggered by g lobal aspec ts, which is diff icult in procedural represen—

tations .
63 

And finally, production systems can provide the link between
A 

geometric and symbolic representations by incorporating graph

63
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productions.
22 Generalized graph produc tions could act as geome tri c

procedures to specif y the spa tial placemen t of primitive feature extrac-

tion operators.

E. DIRECTIONS FOR FUTURE RESEARCH

The principal limiting factor in outdoor scene analysis is t~’~ crude

state of current representational capabilities. A good representation

should be able to model natural shapes , texture , and three—dimensional

information. If sufficiently rich representations for natural scenes

were devised , then , rather than the present shotgun approach , there

would be some direction to research in analysis techniques for the

collection of the fundamental units.

Another important problem , at a more bas ic level , is the lack of a

good implementation language for scene analysis. There is no existing

language which has the fol lowing desirable features: efficient numeric

computation , symbolic computation , clean syntax , basic scene analysis

primitives , good debugging and editing facilities , reasonable portability ,

and good documentation. The developmen t of such a language would dra—

matically affect the rate of progress , standardization of “working ”

modules , and exchange of capabilities between groups.

It is clear that parallelism will become an integral part of scene

analysis systems, if only to achieve high throughput for the comp lex

processes now evolving. Because of the crude state of current attempts ,

it is less clear whether or not parallelism will affect the methodology

itself. The “parallel” algorithms that frequently f ind the ir way into

publica tion show amaz ingly little creative effort to rise above the
“micro” level of the problem. The few facilities that have even crude

parallel processors (e.g., C .mmp) have , understandably and unfortunatel y,

been bogged down in upgrading the state of the art in operating systems

and control. Therefore , a serious attempt from within the vision con—

muni ty ,  wi th the ri ght perspective , could have a dramatic impact on the

whole issue of parallel ism . The approach should he toward the entire

system , at all levels of knowledge , ra ther than , as in the past , attempts

at constructing only piecemeal algorithms. The emphasis should not be

64
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on hardware , for  the hardware problem s can all be solved to some level
of satisfaction. The real effort should be concerned with programming

languages for eff ic iently and effec tively specif ying represen ta tions,

processes , and control. There are certainly many seeds in current multi—

process, Al—language, relaxation—process , production—system , and network

research. But these are all only crude starts.
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